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Abstract. An alternative derivation of the relationship between bond percolation and the 
Ashkin-Teller-Potts model, discovered by Kastelyn and Fourtuin, is presented. The 
derivation is in terms of a correlated bond expansion of standard form. A class of 
percolation models related to the general pstate model is defined, and a relationship 
between bond density and internal energy is derived. The nature of the p = 1 percolation 
limit and its correlation function are also discussed. 

1. Introduction 

Kastelyn and Fortuin (Kastelyn and Fortuin 1969, Fortuin and Kastelyn 1972) have 
shown that bond percolation can be described in terms of the p = 1 limit of the p-state 
Ashkin-Teller-Potts (ATP) (Ashkin and Teller 1943; Potts 1953) model. The result is 
frequently quoted because it established a Hamiltonian formalism for the percolation 
problem. The formalism used by Kastelyn and Fortuin was developed in their paper. 
In an appendix to a recent paper, Stephen (1977) has presented a different derivation. 
The purpose of the present paper is to present an alternative derivation which, we 
believe, brings out more clearly the relationship between percolation and standard 
ideas and series expansion techniques for the king and ATP models. 

While we derive no essentially new results, and our discussion is of course formally 
equivalent to that of Kastelyn and Fortuin (1969) and Stephen (1977), the role of 
percolation in phase transitions seems to come out more clearly. In particular we 
show that a generalised percolation model can be related to the ATP model for general 
p. The Kastelyn and Fortuin bond probability shows up as an expansion parameter 
but the actual density of bonds is related to the internal energy. The bond distribution 
becomes free in the p = 1 percolation limit because the energy vanishes identically in 
this limit. 

The site correlation functions discussed by Stephen (1977) are seen to be the p = 1 
limit of the pstate spin correlation function. 

2. The correlated bond expansion 

We shall use a formalism previously developed for the three-state Potts model 
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(Alexander and Yuval1974). The Hamiltonian for the general p-state ATP model can 
be written: 

where J is the nearest-neighbour interaction and ai is a p-dimensional vector describ- 
ing the spin state at site i. Thus vi has one component which is unity and all its other 
(p - 1) components vanish. Finally the p-dimensional interaction matrix T can be 
written: 

T = l - I I  (2 ) 

where 1 is the p-dimensional unit matrix and all elements of the (p-dimensional) 
projection operator n are equal to l /p .  The partition function is: 

2 = Tr,, exp(-PH). (3 ) 

In analogy with standard expansions for the Ising model this can be written as a 
product over bonds 

where the operators in brackets are defined as in equation (2), and the brackets 
indicate matrix elements with respect to the vectors vi, up Equation (4) can be 
written as a matrix product only for a one-dimensional chain, i.e. when each vi 
appears only twice. It is convenient to use the somewhat more compact notation of 
Alexander and Yuval (1974) and write equation (4) in the form 

( 5 )  z p  = Trut n * [~xP[(P  - ~ ) P J / P  I1 + ~xP(-PJ/P )(pn - 1)Iij 
bonds 

where the * product is defined by equation (4). 
As written, equation ( 5 )  leads to an expansion in equal spin (1) bonds (or in broken 

(pn-1 )  bonds). It thus relates a weighted site percolation problem to the partition 
function. This does not seem to lead to any useful results. Equation ( 5 )  can be 
rewritten in the form 

n * (rl+pH)ij 
bonds 

where Nb is the number of bonds and 

U = exp(-pJ) 

t=( l -u) /v=exp@J)- l ;  

clearly U is the a priori probability that a given bond is uncorrelated, i.e. of type pn, 
We can now expand the product in equation (6). A general term in the expansion 

will have 1 equal spin (1) bonds and Nb- 1 uncorrelated (pn) bonds. By construction 
a term in this expansion vanishes unless all sites in each cluster connected by 1 bonds 
are in the same spin state. Different clusters are connected by pII  bonds and are 
therefore uncorrelated. We can therefore perform the spin trace in terms of the 
clusters of connected sites. Each cluster gives a factor p .  Thus: 
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where 

q,. is the number of ways one can form y connected clusters with 1 bonds on the 
lattice. Thus 41Y is a purely combinatorial factor, determined uniquely by the 
geometry of the lattice. 

In the percolation limit (p  = 1) there is only a single spin configuration. Thus one 
does not have to perform a trace in equation (6). The probability that two sites are 
connected by a 1 bond is thus (1 - v )  and the probability that they are uncorrelated is 
U. The bond densities are then given directly by the a priori probabilities. 

We can, however, also calculate the correlated (1) bond density from equation (9): 

P% = (l)p/Nb = (I/&) d(ln Zp)/d(ln t ) .  (11) 
This leads to a relation with the internal energy (Up): 

P= d(ln 2 ) d(ln 2, - pJNb/p) d p  
d(ln t) dB d(ln t) 

so that 

P:b = [(l/p)-(U,/NbJ)l(l-v). (13) 
This is the density of connected bonds for any p .  Since we have seen that Pcb must 

go to 1 - v as p + 1, it follows that 

lim U,/NbJ = 0 (14) 
P - + l  

for all temperatures. 
While this seems odd, it actually follows directly from the behaviour of the 

Hamiltonian (equation (1)) in this limit. It simply reflects the fact that the interaction 
between parallel spins (Jp) 

Jp = J ( l -  l /p)  (15) 
vanishes in this limit. It is important to note that the temperatures (p- ' )  and the a 
priori bond probabilities (equation (7)) are related to the p-independent parameter J 
and not to the ground state energy ( J ; )  for given p .  

The number of clusters can be obtained directly from equation (9): 

which reduces to the Kastelyn and Fortuin expression (Kastelyn and Fortuin 1969) in 
the limit p + 1. 

Adding a magnetic field to H (equation (1)): 

and taking the proper derivatives one obtains the relationships (Kastelyn and Fortuin 
1969): 
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where Pi, is the probability that a site belongs to the infinite cluster, (n') is the mean 
square size of a cluster and M and ,y are the magnetisation and susceptibility, 
respectively. One also notes that the spin correlation function, when calculated from 
this expansion (equation (6)) is simply the probability that the sites belong to the same 
connected cluster. This demonstrates the relationship between the ATP model cor- 
relation functions and those relevant to percolation (Stephen 1977) in a very straight- 
forward way. 

3. Discussions 

The derivation we have presented seems to have several intuitive advantages, which 
seem attractive because of the pathological and rather formal nature of the p = 1 
percolation limit. Mainly these result from the fact that bond percolation is obtained 
as a limit of well defined p-state percolation problems related to the p-state magnetic 
models. In particular it becomes obvious that the temperature @-') is related to the a 
priori bond probabilities (or to the parameter J )  and not to the ground state energy at 
fixed p. 

The relationship between the bond density and the internal energy is apparently 
new. It should be useful in the interpretation of continuum model results (Harris et a1 
1975, Priest and Lubensky 1976, Amit 1976, Stephen 1976, 1977, Nutterman 1976) 
where there is no direct way to define this density. 
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